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Abstract

Commercially available carbon nanotubes and nanofibers were analyzed to examine possible 

relationships between their Brunauer–Emmett–Teller specific surface areas (SSAs) and their 

physical and chemical properties. Properties found to influence surface area were number of walls/

diameter, impurities, and surface functionalization with hydroxyl and carboxyl groups. 

Characterization by electron microscopy, energy-dispersive X-ray spectrometry, 

thermogravimetric analysis, and elemental analysis indicates that SSA can provide insight on 

carbon nanomaterials properties, which can differ vastly depending on synthesis parameters and 

post-production treatments. In this study, how different properties may influence surface area is 

discussed. The materials examined have a wide range of surface areas. The measured surface areas 

differed from product specifications, to varying degrees, and between similar products. Findings 

emphasize the multiple factors that influence surface area and mark its utility in carbon 

nanomaterial characterization, a prerequisite to understanding their potential applications and 

toxicities. Implications for occupational monitoring are discussed.
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INTRODUCTION

The potential applications of graphene-based materials such as carbon nanotubes (CNTs) 

and carbon nanofibers (CNFs) are being extensively studied. Currently, CNTs and CNFs are 
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produced/used in a range of facilities, from small-scale research laboratories to industrial-

scale production plants. Current applications include electronics, batteries, solar cells, 

polymer composites, coatings, inks, adhesives, and biomedical devices (WTEC, 2007; Milne 

et al., 2008); substantial market growth for CNTs/CNFs is expected over the next decade 

(Lux Research, 2007).

Increasing production of CNTs and CNFs may pose risks for workers who process these 

materials. Adverse respiratory and systemic effects have been found in animal studies (Lam 

et al., 2004; Muller et al., 2005; Shvedova et al., 2003, 2005, 2008; Lison and Muller, 2008; 

Poland et al., 2008; Mercer et al., 2009; Nurkiewicz et al. 2009; Pauluhn, 2010; Porter et al., 

2010; Mercer et al., 2011; Murray et al., 2012), indicating the need to limit worker 

exposure. CNTs with a nickel content of 26% (Lam et al., 2004) and those with higher (18% 

versus 0.2%) iron content (Shvedova et al., 2003, 2008) were reportedly more cytotoxic, but 

both purified and unpurified CNTs caused adverse lung effects (Lam et al., 2004; Shvedova 

et al., 2005, 2008). Early onset and persistent fibrosis (Shvedova et al., 2005, 2008; Porter et 

al., 2010; Mercer et al., 2011), pulmonary inflammation and fibrosis (Lam et al., 2004; 

Muller et al., 2005; Shvedova et al., 2005), and reduced lung clearance (Mercer et al., 2009; 

Pauluhn, 2010) have been observed in rodents at relatively low-mass doses. Acute 

pulmonary inflammation and interstitial fibrosis also have been observed in mice exposed to 

CNFs (Murray et al., 2012). More alarming is the prospect of asbestos-like pathology, as 

reported for one type of multi-walled CNTs (MWCNTs) injected into the abdominal cavities 

of mice (Poland et al., 2008).

CNTs and CNFs can have vastly different properties, depending on synthesis parameters and 

post-production treatments. The varying properties may have significant impact on CNT/ 

CNF toxicity (Donaldson et al., 2006), making it difficult to assess the health risks of these 

materials. Though the mechanisms of toxicity are unclear, health-relevant properties may 

include fiber/tube length, diameter, durability, and chirality; metal impurities (from 

catalysts); agglomerate/bundle size, structure and morphology; and surface area. In 

particular, interest in surface area is based on toxicological studies on some types of 

insoluble nanoscale materials, wherein surface area was found to be better correlated with 

biological response than mass (Lison et al. 1997; Tran et al., 2000; Brown et al., 2001; 

Oberdörster et al., 2005; Nel et al., 2006; Stoeger et al., 2006; Monteiller et al., 2007; Singh 

et al., 2007; Nurkiewicz et al., 2009; Sager and Castranova, 2009; LeBlanc et al., 2010). 

Better correlation may relate to the greater surface reactivity (Hsieh et al., 2012) (e.g. 

inflammatory potential) of smaller particles per unit mass relative to larger (micrometer) 

ones.

CNTs have large surface areas because of their structure and physical form. A theoretical 

surface area of 1315 m2g−1 has been estimated for discrete, single-walled CNTs (SWCNTs) 

assumed to be closed (i.e. no access to tube interior; Peigney et al., 2001). Their actual 

surface areas may be influenced by a variety of properties such as tube/fiber diameter, 

bundling and agglomeration, purity, and surface functionalization. For example, as a result 

of fiber bundling and impurities, the measured surface areas of SWCNTs are typically much 

lower than theoretical, often 600 m2g−1 or less. Theoretical surface areas for MWCNTs are 
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diameter-dependent and estimated to be a few 100 m2g−1 (Peigney et al., 2001), reflective of 

their actual surface areas.

This paper examines the relationship between the surface areas of commercially available 

CNT and CNF products and their physical and chemical properties. Specific surface area 

(SSA) was determined by the Brunauer–Emmett–Teller (BET) gas adsorption method, the 

most widely used method for SSA. To support some of the conclusions drawn, structural 

and elemental composition data on the materials were obtained by scanning electron 

microscopy (SEM) with energy-dispersive X-ray spectrometry (EDS) and transmission 

electron microscopy (TEM) with EDS. Further elemental data were obtained by inductively 

coupled plasma atomic emission spectroscopy (ICP-AES). Thermogravimetric analysis 

(TGA) was also performed to provide supplemental information. This study focuses on 

CNTs, but several raw (unprocessed) and processed CNFs also were examined. The 

materials examined had a wide range of surface areas. Surface areas differed from product 

specifications, to varying degrees, and between products with similar dimensions and purity. 

The findings emphasize the multiple factors that can influence surface area and mark its 

utility for CNT characterization, a prerequisite to understanding their potential applications 

and toxicities. Implications for occupational monitoring are discussed.

EXPERIMENTAL

Materials

CNTs were obtained from the following sources: Nanostructured and Amorphous Materials 

Inc. (NanoAmor, Houston, TX, USA), Chengdu Organic Chemicals Co. Ltd Chinese 

Academy of Sciences (Timesnano, Chengdu, China), Mitsui & Co. Ltd (Mitsui, Tokyo, 

Japan), Carbon Nanotechnologies Inc. (CNI, Houston, TX, USA), and SouthWest 

NanoTechnologies Inc. (SWeNT, Norman, OK, USA). All samples were produced via 

chemical vapor deposition (CVD) except for the SWCNTs from CNI, which were produced 

by the HiPco® (high-pressure carbon monoxide) process. Two raw CNF products and a 

processed, purified final product obtained from a major producer (anonymous) also were 

examined. The raw CNF products were treated at high temperature in an inert gas to remove 

any associated organic compounds and catalyst residue. For the purpose of quality 

assurance, a carbonaceous material (ASTM D24 SRB B-8 carbon black) with known surface 

area was included in the sample set. The material was purchased from Laboratory Standards 

and Technologies (Borger, TX, USA).

BET surface area measurement

The BET surface area analysis was performed with either a Micromeritics Gemini 2375 

instrument (Laboratory 1) or a Micromeritics TriStarII 3020 instrument (Laboratory 2). 

Sample mass was typically 200 mg or more, with a minimum of 100 mg. All samples were 

degassed in ultra-high purity (UHP) nitrogen for 30 min at 90°C and then for 90 min at 

200°C. The free space was measured using UHP helium gas. The SSAs were determined by 

a 5-point BET measurement with UHP nitrogen as the adsorbate and liquid nitrogen as the 

cryogen. The following relative pressures (P/P0) were used: 0.05, 0.10, 0.15, 0.2, and 0.25. 
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A 50-point nitrogen isotherm analysis also was performed on two samples to determine BET 

surface area (and average pore size and single-point total pore volume at a P/P0 = 0.99).

Analytical precision, with this specific equipment and samples of relatively high surface 

area, was reported by the laboratory at ±5%. As part of the quality assurance procedures, 

repeat analyses were performed and some samples were analyzed by two different 

laboratories. To examine the possible influence of degassing temperature, several samples 

were reanalyzed by the same method, except with preheating at 100 or 300°C rather than 

200°C. Details and results of these procedures are provided as Supplementary material 

(available at Annals of Occupational Hygiene online).

SEM with EDS

Analysis by SEM/EDS provided elemental and overall morphological information. Full 

details of the analysis and an in-depth discussion of the results will be given elsewhere. A 

brief description is included here to provide supporting data for the conclusions drawn 

regarding the surface area results.

Samples were prepared for SEM analysis by dispersion in amyl acetate (≥99%, CAS No. 

628-63-7; Sigma-Aldrich, Milwaukee, WI, USA). A tungsten needle was used to transfer a 

small amount of the dispersed material to a beryllium substrate. The samples were imaged 

uncoated. Analysis of the first sample (Sample 4) was performed on a JEOL JSM-6480LV 

SEM (resolution 3.5 nm) using a working distance of 10 mm and accelerating voltage of 10 

kV for imaging and 30 kV for EDS. All other samples were analyzed on a JEOL 

JSM-6480LX SEM, again with an accelerating voltage of 10 kV for imaging and 30 kV for 

EDS. EDS spectra (elemental analysis) were acquired using an Oxford INCA microanalysis 

system with a 50-mm2 silicon drift detector. Images were taken from three representative 

areas and spectra of the same areas were acquired.

TEM with EDS

Analysis by TEM/EDS provides structural, morphological, and elemental information. As 

with the SEM/EDS results, details of the analysis and a full discussion of the results will be 

provided elsewhere. A brief description is given here to provide supporting data for 

conclusions regarding the surface area results.

All samples were analyzed on a JEOL JEM-3010 TEM operated at 300 kV. Elemental 

analysis was performed with an Oxford INCAEDS system with an atmospheric thin window 

detector (elements down to boron), mapping capability, spectrum imaging, and drift 

collection software. Except for one sample (Sample 4), samples were prepared by placing a 

small amount of material in a 1.5-ml centrifuge tube with approximately 1 ml of isopropyl 

alcohol (≥99.9%, CASNo.67-63-0, high-performance liquid chromatography grade; Fisher 

Scientific). Samples were sonicated in an ultrasonic bath for at least 5 min; several required 

a longer sonication period (up to 15 min) for dispersion. In a few instances, the suspension 

appeared too concentrated and was diluted (to avoid overloading). After dispersion, a drop 

of the suspension was applied to a holey carbon-coated TEM grid(200mesh; SPI Supplies, 

West Chester, PA, USA) and allowed to dry. No discernible settling of the material occurred 
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prior to application of the suspensions. Distilled water was used for Sample 4 because it 

provided better dispersion of the material.

Thermogravimetric analysis

TGA was performed on the samples to investigate their residual ash content. All samples 

were analyzed on a Q5000IR TGA (TA Instruments Inc., New Castle, Delaware, USA). The 

initial sample weight ranged from 5 to 15 mg, except three CNF samples, which ranged 

from 1 to 5 mg, due to the ‘fluffy’ structure. Two methods were utilized to determine 

residual ash content, both of which were expected to provide similar results for residual ash. 

The different methods used relate to another project; the results for the two methods were 

averaged, with standard deviations reported. Because complete oxidation occurred with both 

methods, results were equivalent and thus averaged. The first method was comparable to 

NIOSH 5040 (Birch, 2003), starting at room temperature then increasing by 50°C per 

minute to 850°C in nitrogen. The sample oven was held at 850°C for 2 min and then cooled 

to 500°C. The gas was switched to air, and the temperature was then increased at 50°C per 

minute to 920°C and held at 920°C for 2 min. The second method was performed in air, 

ramping from room temperature to 920°C at 5°C per minute. For all samples, mass loss rates 

near the end of the analysis were near zero.

Inductively coupled plasma atomic emission spectroscopy

The metal contents of the samples were examined by ICP-AES (Spectro Modula EOP; 

Spectro Analytical Instruments Inc., Mahwah, NJ, USA). Samples were placed into pre-

weighed capped glass vials and weighed. They were then transferred to 125-ml beakers in a 

fume hood for digestion and analysis according to NIOSH Method 7300, modified for bulk 

CNTs. Specifically, for sample digestion, 5 ml of concentrated nitric acid and 20 ml of 

concentrated perchloric acid were added to each sample. The samples were covered with a 

watch glass and refluxed at 200°C until dissolution occurred. The watch glass covers were 

then removed and the samples were heated at 150°C until they had reached near dryness. 

The residues were dissolved in a dilute solution (4/1%) of nitric acid/perchloric acid (10 ml 

final volume) and analyzed for trace metals by ICP-AES. The samples were filtered with 

0.45-μm filters prior to analysis, if needed. Samples were analyzed for the following metals: 

Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, 

Sr, Te, Ti, Tl, V, Y, Zn, and Zr. Analysis of Mo, Na, Sb, Te, Ti, and Zr are considered 

semiquantitative because the standard solutions used to check recovery lacked these six 

elements. Analytical precision (RSD) for the ICP-AES instrument ranges from ~0.5 to 3%.

RESULTS AND DISCUSSION

Quality assurance

All repeat BET analyses showed good agreement (see Supplementary Tables S1 and S4, 

available at Annals of Occupational Hygiene online). Analytical precision for repeat 

analyses, at the same or at two different laboratories, was better than 4% (Supplementary 

Table S1, available at Annals of Occupational Hygiene online). Correlation coefficients (r2) 

for BET fits were typically 0.9999 or better, with no value <0.9998. For the two 

laboratories, the mean result (n = 3, RSD = 1%) for the ASTM material (ASTM D24 SRB 
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B-8 carbon black) was 140.7 m2g−1, which is within ~1% of the reported value (142.6 

m2g−1).

Full results and details regarding the BET analyses and quality assurance measures are 

provided as Supplementary material (available at Annals of Occupational Hygiene online). 

In brief, heating the samples at 300°C and 200°C for 90 min gave comparable results 

(Supplementary Table S2, available at Annals of Occupational Hygiene online), as did 5-

point BET and 50-point isotherm analyses (Supplementary Table S3, available at Annals of 

Occupational Hygiene online). Sample preparation at 100°C gave lower (some slightly) 

surface areas than at 200°C (Supplementary Table S4, available at Annals of Occupational 

Hygiene online), which is attributed to incomplete pore clearing of condensates. Degassing 

was, therefore, performed at 200°C to remove adsorbed compounds.

Influence of CNT properties on BET surface area

The varying properties of CNTs can result in widely different surface areas. For CNTs, the 

number of walls, tube diameter, surface functionalization, and metal and amorphous carbon 

impurities are important contributors to varying surface area (Peigney et al., 2001; 

Chakraborty et al., 2006; Naseh et al., 2009). Length is an additional variable explored in 

this paper. Sonication, which promotes debundling of fibers, was reported to increase 

surface area (Peigney et al., 2001), but this parameter was not addressed. The method of 

synthesis also may influence surface area, especially because of differences in the purity of 

the products, but this specific parameter also was not evaluated.

Before further discussion of the properties that influence SSA, it is helpful to briefly discuss 

nitrogen adsorption on CNTs. Nitrogen may adsorb to multiple surfaces of the typically 

bundled CNTs (Peigney et al., 2001; Kondratyuk and Yates, 2007). Externally, nitrogen 

may adsorb to the outer surface of the curved portion of a CNT or in a groove site, which is 

the groove formed by two adjacent CNTs in a bundle. Nitrogen can also adsorb to the inner 

core of a CNT, if accessible, and the interstitial space between three or more CNTs in a 

bundle (Agnihotri et al., 2005; Byl et al., 2005). Nitrogen has a kinetic diameter of 3.64 Å 

(Reid and Thomas, 1999), allowing the nitrogen adsorption to occur both outside and inside 

the CNTs, except for the spaces between the layers of MWCNTs, which are reported to be 

approximately 3.4 Å apart (Endo et al., 2004). Whether the tubes are open or closed when 

comparing BET SSA values is an important consideration. Some authors make the 

assumption that the tubes are all open, while others assume they are closed. However, the 

production process (synthesis, purification, and functionalization) determines whether the 

CNTs are open or closed (Mackie et al., 1997; Peigney et al., 2001; Du et al., 2002; Endo et 

al., 2004; Li et al., 2004; Agnihotri et al., 2005; Byl et al., 2005). Typically, CNTs are 

closed on the ends until they undergo various treatments for purification and/or 

functionalization, which can open the ends of the CNTs to varying degrees.

Theoretical calculations of the surface area of CNTs have been performed. Maximizing the 

surface area of SWCNTs is a goal for multiple applications such as catalyst development 

and gas storage; therefore, the majority of theoretical calculations are done for SWCNTs to 

estimate maximum values. Yin et al. (1999) determined the theoretical estimates via Monte 

Carlo simulation, assuming a square array for SWCNTs with diameters of 3 nm, 0.4 nm 
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spacing, and open tube ends, to be ~3200 m2g−1. This compares to ~1200 m2g−1 for the 

same scenario with closed tubes. Peigney et al. (2001) performed theoretical calculations for 

individual SWCNTs and found the SSA to be 1315 m2g−1 assuming all tubes are closed. 

The SSA was calculated to be 751 m2g−1 for a bundle of seven SWCNTs in a triangular 

network. As for MWCNTs, Peigney et al. (2001) reported the SSAs for a range of individual 

MWCNTs: 50 m2g−1 for a 35-nm diameter 40-walled tube; 175 m2g−1 for a 15-nm 

diameter, 10-walled tube; and 500 m2g−1 for a 6-nm diameter, 3-walled tube.

A wide range of SSA values for CNTs has been reported, with values depending on multiple 

factors such as synthesis procedure, purification methods, and chemical and physical 

properties. For MWCNTs, values from 22.38 (Zhu et al., 2003) to 1670 m2g−1 (Raymundo-

Pinero et al., 2005) have been reported. The low result for MWCNTs was attributed to the 

large amount of impurities (amorphous carbon particles, multi-layer polygonal particles, and 

large graphite platelets) found in the sample after carbon arc synthesis, while the high result 

is attributed to increased porosity due to chemical activation of a disordered MWCNT 

sample synthesized by CVD. SWCNTs have been found to have SSAs from 2 (Martinez et 

al., 2003) to 1587 m2g−1 (Cinke et al., 2002; Li et al., 2004; Hemraj-Benny et al., 2008). 

The low surface area SWCNTs was produced via arc-discharge and originally had a SSA of 

236 m2g−1. They were then acid treated and air oxidized, which reportedly introduced 

functional groups and intercalated acid molecules blocking the entry of the adsorbing gas, 

resulting in an extremely low SSA of 2 m2g−1. The high surface area of the SWCNTs is 

attributed to treating HiPco® SWCNTs with N,N-dimethylformamide/ethylene diamine to 

debundle the tubes, followed by acid treatment and oxidation to remove impurities and open 

the tubes. Overall, a wide range of SSA values has been reported for CNTs, but commonly 

reported values range from ~150 to 600 m2g−1 for SWCNTs (Eswaramoorthy et al., 1999; 

Fujiwara et al., 2001; Cinke et al., 2002; Martinez et al., 2003; Kayiran et al., 2004; Li et 

al., 2004; Chakraborty et al., 2006; Hemraj-Benny et al., 2008) and from ~15 to 300 m2g−1 

for MWCNTs (Tsang et al., 1993; Yin et al., 1999; Raymundo-Pinero et al., 2002; Zhu et 

al., 2003; Li et al., 2004; Chen and Wang, 2006; Zacharia et al., 2007; Naseh et al., 2009).

Results of BET measurements for materials examined in this study are summarized in Table 

1. The ASTM standard, carbon black, which has a reported surface area of 142.6 m2g−1, was 

determined to have an average surface area of 140.7 m2g−1 (RSD = 0.4%, n = 3), within 

~1% of the reported value and well within the ±5% reported analytical error. The SSAs for 

the different CNT materials examined ranged from a low of 22 m2g−1 for the Mitsui 

MWCNT (Sample 7) to a high of 662 m2g−1 for a NanoAmor SWCNT (Sample 1). 

Excluding the Mitsui material and one Timesnano MWCNT (Sample 14) that underwent 

heat treatment at 2800°C, the range of SSAs is comparable to the range of values found in 

the literature. How measured results compare to vendor specifications, and how different 

properties may influence SSA are discussed in following sections.

Product comparison

Different manufacturers using CVD synthesis and offering CNT products with similar 

properties were examined. A SWCNT (Sample 1) from NanoAmor [1–2 nm outer diameter 

(OD); 5–30-μm length] had a SSA of 662 m2g−1, while a SWCNT from Timesnano with the 
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same purity, OD, and length (Sample 2) had a SSA of 367 m2g−1. The SWCNTs from 

SWeNT (Sample 4), which have reported diameters that are slightly less (0.9 ± 0.2-nm OD) 

than the other two products, had a SSA of 616 m2g−1. The SWCNTs from CNI (Sample 3) 

had a SSA of 144 m2g−1, much lower than the other materials and the value reported by the 

supplier. This CNI material was produced by the HiPco® process rather than CVD.

Differences exist in the residual ash content and total metal mass percentage (Table 2) 

between samples provided by different manufacturers. Sample 3, with the lowest SSA, has 

the highest residual ash content of any of the SWCNT samples (21.63 ± 3.42%). Sample 4 

has the next highest ash of the SWCNTs, at 7.42 ± 0.11%, followed by Timesnano (Sample 

2: 6.39 ± 0.16%) then NanoAmor (Sample 1: 2.39 ± 0.07%). The ICP-AES results for 

different manufacturers show a trend similar to the TGA results. Sample 3 has a total metal 

mass percentage of 13.3, Sample 4 has 5.13, Sample 2 has 3.63, and Sample 1 has a total 

metal mass percentage of 1.85, corresponding to their decreasing residual ash contents. A 

similar range for SWCNT metal content has been reported (Plata et al., 2008).

MWCNTs (10–20-nm OD; 10–30-μm length) purchased from NanoAmor (Sample 5) had a 

measured SSA of 146 m2g−1 (Table 1). A comparable MWCNT material from Timesnano 

(Sample 6) had a SSA of 177 m2g−1, while the Mitsui MWCNTs (Sample 7) had the lowest 

SSA of only 22 m2g−1. Differences between TGA results for different samples from 

different manufacturers were less for the MWCNT samples compared to SWCNTs, with the 

residual ash being 0.96 ± 0.20%, 0.79 ± 0.43%, and 0.36 ± 2.06% for Samples 5, 6, and 7, 

respectively. The ICP-AES results again follow the same trend between manufacturers as 

the TGA results, with total metal mass percentages being 0.78, 0.65, and 0.48 for Samples 5, 

6, and 7, respectively.

Obviously, the SSAs of CNTs from different suppliers may exhibit a wide range of values 

(Table 1). Different processing methods utilized by different manufacturers influence 

important factors such as tube bundling, fraction of open tubes, and the amounts and types 

of impurities present, contributing to the varying SSAs of these materials. As indicated in 

Table 1, suppliers often report a range of SSAs for their CNT products; however, our results 

for these materials differ, to varying extents, from the reported values, sometimes 

substantially. Measured versus supplier-listed SSAs are plotted in Fig. 1 for easy 

comparison.

Impurities

Increases in BET surface area have been seen after removal of amorphous carbon through 

thermal treatment and after acid treatment to remove metal impurities associated with CNTs 

(Eswaramoorthy et al., 1999; Li et al., 2003; Chen et al., 2007). The increase is partially due 

to an increase in the surface accessible for nitrogen adsorption after removal of impurities. 

Eswaramoorthy et al. (1999) reported SWCNTs with a surface area 376 m2g−1, increasing to 

483 m2g−1 after hydrochloric acid treatment, which opens the CNT hollow core known as a 

pore. After nitric acid treatment, which opens pores and eliminates carbon impurities, 

surface area increased to 429 m2g−1. Cinke et al. (2002) studied a HiPco® material before 

and after iron impurities had been removed, and debundling via dimethylformamide/

ethylene diamine treatment had been performed, and found that the surface area drastically 
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increased from 577 to 1587 m2g−1. Li et al. (2004) found pure synthesized SWCNTs to have 

a surface area of 619.1 m2g−1; addition of MWCNT impurity to the sample decreased the 

surface area to 396.5 m2g−1, with 47.9% SWCNT still present. Ning et al. (2005) concluded 

that BET surface area measurements were an efficient way to determine purity during the 

synthesis of SWCNTs, with higher purity samples having higher surface areas. Chen et al. 

(2007) reported an increase in surface area for MWCNTs synthesized by CVD, from 133.66 

to 167.92 m2g−1 for 10–20-nm OD MWCNTs after an acid microwave treatment for 

purification. Overall, for both SWCNTs and MWCNTs, an increase in purity is expected to 

correlate with an increase in surface area.

A special case to consider is highly graphitized CNTs. Graphitization of MWCNTs 

(typically at a temperature upwards of 2000°C) increases the purity and uniformity in 

MWCNTs and decreases the amount of metal catalyst impurity in the CNTs (Andrews et al., 

2001; Delpeux-Ouldriane et al., 2006). Although graphitization is associated with processes 

that may lead to an increase in surface area, typically the surface area decreases after 

graphitization. Delpeux-Ouldriane et al. (2006) and Andrews et al. (2001) pointed out that 

graphitization causes more ordering of the walls of MWCNTs, leading to removal of 

microstructural defects, and closing of MWCNT ends. Overall, a decrease of sidewall 

microstructural defects leading to decreased accessibility of the inner nanotubes, as well as 

closing of the CNT ends, is likely the reason for the decrease in the SSAs for graphitized 

samples.

Results for two Timesnano SWCNTs (1–2-nm OD; 5–30-μm length) having purities of 

>90% (Sample 2) and >60% (Sample 8) show an increase in surface area for the lower 

purity product, from 367 to 392 m2g−1, which is not expected based on most literature 

reports (Eswaramoorthy et al., 1999; Li et al., 2003; Chen et al., 2007). The SSAs for both 

materials are lower than those reported by the supplier, >380 m2g−1 for high-purity 

SWCNTs and >407 m2g−1 for low-purity SWCNTs, but the relative results are consistent. 

However, the literature mentions problems with purification of CVD-produced SWCNTs, 

especially on a large scale. The oxidation treatments utilized to purify SWCNTs can cause 

the following: (i) oxidation of the SWCNTs, which leads to open pores being blocked; (ii) 

damage and distortion of the SWCNTs; and (iii) damage to the SWCNTs due to removal of 

metal impurities inside of the SWCNTs (Montoro and Rosolen, 2004; Park et al., 2006). 

Damage to the surface of the nanotubes generates carbonaceous impurities such as 

amorphous carbon, fullerenes, graphitic particles, and carbon shells. Sample 8 does have 

slightly less residual ash content and less total metals than Sample 2, based on the TGA and 

ICP-AES results (Table 2). Therefore, blocked pores may be the main contributor to the 

decrease in SSA. Although the manufacturer lists a higher purity for Sample 2 than Sample 

8, either because of fewer metals or more SWCNTs present, the SSA may have decreased 

because of the purification treatment. The 7.4% ash content of SWCNT Sample 4 (SWeNT), 

yet relatively high SSA of 616 m2g−1, seems counter to the trend of higher SSA for higher 

purity materials. However, this particular material was produced with a high surface area 

catalyst; catalyst impurities may have increased SSA. Further, synthesis was by CO 

disproportionation in a unique CoMoCAT® process that produces SWCNTs with smaller 

diameters (1 nm and less) and a narrower diameter distribution relative to other CVD 
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methods, which also may explain the relatively high SSA. Measured diameters (Table 3) 

were <1 nm, while comparable materials had diameters ranging from 1 to 5 nm.

In addition to metal impurities, TEM and SEM analyses indicate that all SWCNT samples 

contain MWCNTs, with the exception of the CNI SWCNT (Sample 3), which appeared to 

be almost exclusively SWCNTs. Other carbon impurities also were found in some of the 

samples. The short Timesnano SWCNTs (Sample 9) showed one atypical sheet-like 

graphitic structure (Fig. 2). The Timesnano SWCNT-OH sample (Sample 11) also contained 

sheet-like graphitic structures.

Industrial-grade (purity >85%) MWCNTs (Sample 13) did exhibit a lower surface area, 119 

m2g−1 compared to 177 m2g−1 for a higher purity MWCNTs (Sample 6), as expected. This 

is typically due to the increased metal and amorphous carbon impurities. The TEM results 

show that both samples have some CNTs with larger diameters, but more importantly, 

Sample 13 also contains MWCNTs with internally segmented structures, which would lead 

to a decrease in SSA due to the inaccessible inner surface of the CNTs. As can be seen in 

Fig. 3, Sample 13 contains many more impurities compared to Sample 6. The TGA and ICP-

AES results both support these conclusions, as the residual ash content and total metals 

present are both significantly larger for the lower purity sample. The highly graphitized 

MWCNTs (Sample 14), with equivalent diameter and length ranges, had an SSA of 74 

m2g−1, consistent with the decreased SSAs reported for these (graphitized) materials. Also, 

Sample 14 had lower residual ash and total metal contents, as seen from the TGA and ICP-

AES data. The SEM/EDS and TEM/EDS results were quite consistent between the samples, 

showing carbon, oxygen, silicon, and sulfur as the only elements present besides the iron 

catalyst particles (Table 4). Minor differences were observed as aluminum was found in 

only one area of Sample 19, titanium was found in one region of Sample 19, and calcium 

was found in only one region of Sample 20. These results likely reflect sample 

inhomogeneity and the limited area/volume analyzed.

SEM and TEM analyses revealed interesting morphological features in some MWCNT 

samples. For example, the Timesnano double-walled CNTs (DWCNTs; Sample 12) had a 

mixture of smooth-walled nanotubes with continuous hollow cores that were mainly bundles 

and ropes as well as some DWCNTs, SWCNTs, and MWCNTs individually seen. Also 

present were nanotubes that were not smooth on the surface but rather had the appearance of 

nodules and chain-like segments (Fig. 4). Highly graphitized nanotubes from Timesnano 

(Sample 14) had large elongated particles present (100–200 μm long and 5–10 nm 

diameters) tapering to points/caps at each end. Sample 14 also contained MWCNTs with 

nodular or segmented morphologies that were not fully graphitized, which was recognized 

by their d-spacing (distance between layers) being 0.38–0.39 nm (as opposed to 0.335 for 

graphite). Refer to Table 3 for additional details.

Number of walls/diameter and length

Theoretical calculations of surface area indicate that surface area varies with the number of 

shells (walls) and diameter of CNTs (Peigney et al., 2001), with the number of shells having 

a dominant influence on surface area over the diameter. The addition of a shell has a more 

dramatic influence because of the increased mass it contributes rather than surface area. 
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Surface area is known to increase with decreasing outer diameter of CNTs (Peigney et al., 

2001; Chen et al., 2007). As reported previously, length had no apparent influence on 

surface area (Chakraborty et al., 2006).

Regarding results presented in this paper, the surface area of MWCNTs from Timesnano 

differed relative to outer diameter, with 10–20-nm OD tubes (Sample 6) having a SSA of 

177 m2g−1 and 20–30-nm OD tubes (Sample 15) having a SSA of 118 m2g−1. The SWCNTs 

(Sample 2), which have much smaller ODs (1–2 nm) than MWCNTs, have a higher surface 

area, 367 m2g−1, than MWCNTs. A DWCNT from Timesnano (2–4-nm OD; 50-μm length) 

had a SSA of 384 m2g−1 (Sample 12), similar to that of SWCNTs. The TEM results support 

our conclusion by showing good agreement between the supplier-listed diameters and the 

experimentally determined diameters. The CNT impurities (i.e. non-MWCNT CNT) found 

in Sample 15 had diameters of 9–70 nm, while the CNT impurities in Sample 6 had 

diameters of 10–40 nm. Therefore, because the larger diameter MWCNTs (Sample 15) 

contain CNT impurities with diameters comparable to (or slightly larger than) the CNT 

impurities in the smaller diameter product (Sample 6), the impurities do not complicate the 

relationship of smaller diameter CNT samples having larger surface areas. Overall, our 

results for SSAs agree with the trends reported in the literature for number of walls and 

diameters of CNTs.

CNFs from a major manufacturer also were analyzed. Three samples were examined: two 

raw materials from two different reactors (Samples 19 and 20) and a final, processed product 

(Sample 21). The CNFs analyzed have an OD in the range of ~50–200 nm, significantly 

larger than that of the MWCNTs, and exhibited much smaller surface areas than most of the 

CNTs. The two raw products (Samples 19 and 20) have SSAs of 2 and 19 m2g−1, 

respectively, while the SSA of the final (Sample 21), processed product is 35 m2g−1. As 

determined by TEM analysis (Table 3), the diameters of the nanofibers from reactor 1 

(Sample 19) ranged mainly from 50–70 nm, similar to those from reactor 2 (Sample 20), 

which were mainly 50–80 nm. The final product (Sample 21) consisted of fibers mainly in 

the diameter range 50–80 nm. The SEM and TEM images of Samples 19–21 showed other 

structures as described in Table 3. Overall, Samples 19–21 were heterogeneous mixtures of 

spherical particles and long nanofibers. It also was noted for Samples 19–21 that some of the 

CNFs had an internally segmented structure and much of the sample appeared to be 

turbostratic, which would prevent nitrogen adsorption in the core of the CNFs. The TGA 

results for Samples 19–21 showed residual ash contents of 0.59 ± 0.44%, 1.2 ± 0.31%, and 

1.48 ± 0.60%, respectively. The ICP-AES results followed a similar trend, when taking into 

account the standard deviations of the TGA results, in that the total metal mass percentages 

were similar, being 1.11, 0.99, and 1.15, respectively. The relationship between the diameter 

of the CNFs discussed here and SSA is not straightforward. It seems that multiple 

parameters (e.g. impurities, morphology, and structure) play a role for these particular 

products.

The SSA for a Timesnano SWCNT product (Sample 2) with a reported length of 5–30 μm 

was 367 m2g−1, which is slightly higher than the result of 343 m2g−1 for a shorter (1–3 μm) 

material (Sample 9) purchased from this company. Surface area showed no significant 
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difference when length varied from 10–30 μm (Sample 6), with a SSA of 177 m2g−1, and 

0.5–2 μm (Sample 16), with a SSA of 180 m2g−1.

Functionalization with –OH and –COOH groups

Functionalization of CNTs may occur through a variety of treatments, which are detailed in 

the Supplementary material, available at Annals of Occupational Hygiene online. Naseh et 

al. (2009) have shown that both chemical and plasma functionalization of MWCNTs 

increase the SSA of the MWCNTs. Rationale provided indicates that the functionalization 

process opens tube ends and generates sidewall defects. These extra openings provide 

accessibility into the cavity of the CNTs, hence increasing SSA. Furthermore, 

functionalization of CNTs disturbs the π-π interaction between the tubes, causing 

debundling and increased SSA. Tube opening and removal of impurities (see Impurities 

section) during oxidative treatments also have been reported by others to explain the 

increase in SSAs. Specific examples are discussed in the Supplementary material, available 

at Annals of Occupational Hygiene online (Li et al., 2003; Ye et al., 2005; Chen and Wang, 

2006). In general, an increase in SSA has been found when MWCNTs are oxidized (Li et 

al., 2003; Ye et al., 2005; Chen and Wang, 2006; Naseh et al., 2009).

A decrease in SWCNT SSA has been reported after some specific functionalization 

reactions; examples are discussed in the Supplementary material, available at Annals of 

Occupational Hygiene online. In one study, a decrease in the SSA of HiPco® synthesized 

SWCNTs after ozonolysis was suggested to be due to rebundling of the SWCNTs 

(Chakraborty et al. 2006). An increase in SSA was then seen when these functionalized 

CNTs were reacted with acid and baked at high temperatures (Chakraborty et al., 2006). 

Hemraj-Benny et al. (2008) saw a decrease in the SSA of SWCNTs after ozone treatment, 

and attributed it to functional groups blocking pore entrances and bundling of oxidized 

nanotubes via hydrogen bonding, which also blocks pore entrances. Following ozone 

treatment, a hydrogen peroxide treatment was given, which still showed an overall decrease 

in SSA. The overall decrease was attributed to openings being blocked by surface functional 

groups, although there are more openings in SWCNTs due to the extensive oxidation 

treatments.

The severity of oxidative treatments may influence the SSA. It is possible that more mild 

treatments, such as an air oxidation, create openings that are essentially bored into the 

sidewalls of CNTs without formation of functional groups that may block the openings, 

therefore allowing for an increase in SSA (examples provided in the Supplementary 

material, available at Annals of Occupational Hygiene online). In general, the literature 

shows a decrease in SSA when SWCNTs undergo oxidative treatments (Martinez et al., 

2003; Byl et al., 2005; Chakraborty et al., 2006; Hemraj-Benny et al., 2008).

The SSA results presented here are for –COOH- and –OH-functionalized SWCNTs and 

MWCNTs, though it is possible that functional groups other than those specified by the 

manufacturer are present. With both CNT types, –COOH functionalization created no 

significant change in SSA. Unfunctionalized SWCNTs from Timesnano (Sample 2) had an 

SSA of 367 m2g−1, similar to the SSA for carboxyl-functionalized (–COOH) SWCNTs 

(Sample 10), 353 m2g−1. Surface functionalization with –COOH (Sample 17) produced no 
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significant difference relative to unfunctionalized MWCNTs (Sample 6), 171 m2g−1 and 177 

m2g−1, respectively. One explanation may be that the unfunctionalized materials had been 

processed via acid and heat treatments to obtain a highly purified sample, removing metals 

and possibly opening nanotubes. As noted (see Impurities section), purification can change 

the SSA; therefore, when comparing a purified sample with a surface functionalized sample, 

one may not expect to see a difference in the SSA because of the similar treatments.

After –OH functionalization, MWCNTs showed an increase in SSA, from 177 to 192 m2g−1 

(Table 1; Samples 6 and 18). This may be the result of a strong oxidation treatment that 

opened up the nanotubes significantly and caused tube debundling. Figure 5 shows TEM 

images of Samples 6 and 18. Sample 18 shows more open-ended MWCNTs than Sample 6. 

In contrast, an –OH-functionalized, SWCNT product (Sample 11) showed decreased SSA 

relative to its unfunctionalized equivalent (Sample 2), from 367 to 310 m2g−1, which may be 

due to tube rebundling, degradation, and/or functional groups blocking the pore openings.

Surface area as an exposure metric

Although there currently is no consensus regarding the most relevant exposure metric(s) for 

CNTs/CNFs, toxicological findings have prompted interest in workplace monitoring of 

nanoaerosol surface area. A BET analysis can be readily applied to bulk powders (e.g. to 

characterize CNTs for toxicological studies), but not to workplace monitoring at low 

concentrations. Various portable instruments, typically ‘diffusion-charger’-(DC) based 

instruments reported to measure ‘active surface area,’ have been employed (Brouwer et al., 

2009; Elihn and Berg, 2009; Park et al., 2009; Evans et al., 2010; Bau et al., 2011; LeBouf 

et al., 2011), but it is unclear what these instruments actually measure in the field.

Correlation between BET- and DC-based results is not straightforward, especially for 

polydisperse aerosols containing larger particles (Ku and Kulkarni, 2012). Aerosols of CNT 

and CNF, and other nanomaterial powders, contain micrometer-sized agglomerates, which 

differ significantly from the ‘ideal’ aerosols used for instrument calibration (Ku and 

Kulkarni, 2012). Nevertheless, DC-based instruments have been applied to field studies on 

nanomaterials (Ntziachristos et al., 2007; Brouwer et al., 2009; Elihn and Berg, 2009; 

Buonanno et al., 2010; Evans et al., 2010). Most studies neglect to mention that a DC-based 

(active) surface area is not the same as BET (specific) surface area, and the instrument often 

is applied beyond the applicable particle size range (Ku and Kulkarni, 2012). A DC 

instrument gave results comparable to the geometric surface area for silver agglomerates 

<100 nm, but for agglomerates in the 100–200 nm size range, it underestimated the 

geometric surface area (Ku and Maynard, 2005). In another study, the DC-based surface 

area for spherical particles deviated significantly from the geometric surface area as the 

particle size increased to 900 nm (Ku, 2009, 2010). In a related study, the response of three 

DC instruments substantially underestimated the geometric surface area of submicrometer 

particles, by a factor of 3–10, with disagreement being greatest for larger particle 

agglomerates (Ku and Kulkarni, 2012). Even larger differences could be expected for 

complex aerosols such as CNTs and CNFs. These studies emphasize the problems in 

interpreting results of DC-based instruments, even when interferences are absent.
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The utility of direct-reading instruments for workplace monitoring of nanomaterials has 

been reported (e.g. Old and Methner, 2008; Methner et al., 2010); however, in our work 

(Evans et al., 2010; Birch et al., 2011; Dahm et al., 2012), direct-reading instruments have 

not been useful for monitoring CNTs and CNFs (or nanomaterial powders generally) 

because they lack adequate sensitivity and selectivity. In our field studies, direct-reading 

instruments mainly have been used as indicators of background ultrafine aerosols, which are 

often present. Thus, even if reliable, sensitive, direct-reading instruments for monitoring 

aerosol surface area concentration were available, interference of other aerosols is a 

common problem that precludes accurate field measurement of nanomaterial surface area.

CONCLUSIONS

SSA can provide insight on the varied properties of CNTs and is a useful indicator of sample 

purity and homogeneity. The materials examined have a wide range of surface areas. 

Measured surface areas differed from product specifications, to varying degrees, and 

between similar products. For example, comparable SWCNT products with similar reported 

SSAs (near 400 m2g−1) had measured values of 662 m2g−1 (Sample 1) and 367 m2g−1 

(Sample 2). Higher residual ash and metal content were found in the latter material, which 

lowers the SSA. Thus, the measured SSA was predictive of the different CNT purities of 

these materials. Electron microscopy and other analyses provided supporting data in 

identifying properties that influence SSA, including tube diameter, material defects, tube 

bundling, metals, and other carbonaceous matter.

Surface area is one of several metrics thought to be relevant to nanomaterial exposure, based 

on inhalation studies of some insoluble, fine/ nanoscale particles. Though suppliers often 

provide SSAs and other data, thorough material characterization is needed. Results may 

differ from vendor specifications, sometimes substantially, and other key information (e.g. 

metals, amorphous carbon, and other CNT impurities; tube length and diameter) may be 

inaccurate or lacking. Comparisons between studies of materials that ostensibly have the 

same properties may be confounded if based on inaccurate/inadequate specifications. 

Thorough characterization is needed to account for differences that may affect toxicity and 

other research findings. This is especially important for in vitro studies, where very specific 

particle properties are examined with respect to specific toxicity endpoints.

Currently, there is no standardized method to measure the SSA concentration of workplace 

nanomaterial aerosols. Even if such methods existed, interference of other aerosols is a 

common problem. However, a sample of the bulk material(s) often can be obtained at the 

worksite. Multiple analyses can then be performed to more fully characterize the materials 

to which workers are exposed. A better understanding of the range of properties and 

toxicities of commercial CNTs and CNFs is needed to ensure health protective standards.

Although SSA provides useful information, the potential toxicity of CNTs and CNFs more 

likely relates to their fibrous structure and degree of agglomeration/bundling, perhaps in 

combination with residual metal and organic contents. Research on dose–response 

relationships is needed to determine what metrics are most appropriate for different types of 

nanomaterials. Ultimately, any metrics applied to occupational monitoring must be 
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adequately sensitive and selective so that health risks based on exposure data can be 

accurately assessed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Measured versus supplier-listed SSAs of CNTs and CNFs. Circle markers correspond to 

lowest purity (>60%) CNTs, the triangle marker is highest purity (>99%) CNT, and the 

square marker is ASTM carbon black. Marker numbers correspond to sample numbers in 

Table 1. Solid line is expected trend (unity slope).
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Fig. 2. 
TEM image of short Timesnano MWCNTs, Sample 9, showing atypical sheet-like graphitic 

structure.
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Fig. 3. 
TEM images of higher purity MWCNTs, Sample 6 (a and b) and lower purity MWCNTs, 

Sample 13 (c and d). Note that Sample 13 shows MWCNTs with impurities of amorphous 

carbon and metals.
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Fig. 4. 
TEM image of Timesnano DWCNTs, Sample 12, showing nanotubes with the appearance of 

nodules and segmented structure.
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Fig. 5. 
TEM images of MWCNTs Sample 6 (a) and Sample 18 (b). Sample 18 shows more open-

ended MWCNTs than Sample 6, which may explain its larger surface area.
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Table 2

Summary of TGA and ICP-AES results for commercially available carbon nanomaterials.

SN Manufacturer, product Residual ash, % (SD) Total metal (mass %)

1 NanoAmor, SWCNT 2.39 (0.07%) 1.85

2 Timesnano, SWCNT 6.39 (0.16%) 3.63

3 CNI, SWCNT 21.63 (3.42%) 13.33

4 SWeNT, SWCNT 7.42 (0.11%) 5.13

5 NanoAmor, MWCNT 0.96 (0.20%) 0.78

6 Timesnano, MWCNT 0.79 (0.43%) 0.65

7 Mitsui, MWCNT 0.36 (2.06%) 0.48

8 Timesnano, SWCNT 5.05 (0.62%) 3.37

9 Timesnano, SWCNT 3.71 (0.11%) 1.67

10 Timesnano, SWCNT-COOH (2.73 wt%) 1.54 (0.27%) 1.06

11 Timesnano, SWCNT-OH (3.96 wt%) 3.15 (0.32%) 1.28

12 Timesnano, DWCNT 4.59 (0.18%) 2.98

13 Timesnano, MWCNT 9.73 (1.06%) 7.34

14 Timesnano, MWCNT 0.35 (0.30%) 0.27

15 Timesnano, MWCNT 2.6 (0.16%) 1.98

16 Timesnano, MWCNT 0.69 (0.11%) 0.73

17 Timesnano, MWCNT-COOH (2.00 wt%) 0.85 (0.39%) 0.61

18 Timesnano, MWCNT-OH (3.06 wt%) 1.14 (0.24%) 0.69

19 CNF reactor 1 0.59 (0.44%) 1.11

20 CNF reactor 2 1.2 (0.31%) 0.99

21 CNF final product 1.48 (0.60%) 1.15

22 ASTM black carbon 0.25 (0.34%) 0.12

SD, standard deviation; SN, sample number.
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Table 4

Summary of SEM/EDS and TEM/EDS elemental analysis results for commercially available carbon 

nanomaterials. Carbon and oxygen were found in all samples and therefore omitted from the table for brevity. 

Corresponding CNT diameters and lengths are provided in Table 1.

SN Manufacturer, product SEM/EDS TEM/EDS Catalyst

1 NanoAmor, SWCNT Co, Fe Co, Fe Co 2–5 nm; larger CNTs were 
associated with Fe

2 Timesnano, SWCNT Minor Zn, Cl, S, Si, Mg, Al; 
trace Fe

Minor Zn, Cl, S, Si, Mg, 
Al

Co; also observed structures rich in 
Ca and F

3 CNI, SWCNT Fe, Si; trace Ti, Cr Fe, Si; trace S Fe (particles closely packed and not 
individually observed)

4 SWeNT, SWCNT Minor to trace Mo, Co; trace Na, 
Al, Si, Cl, Ca, Fe, Cu

C, O; minor to trace Mo, 
Co; trace Na, Al, Si, Cl, 
Ca, Fe, Cu

Co and Mo in varying ratios, 1–3-
nm particles

5 NanoAmor, MWCNT Ni, S, Si (Fe seen in one area) Ca, K, Zn, Cl Ni (SEM showed Ni with trace Fe)

6 Timesnano, MWCNT Ni, Fe, S, Si Ca, K, Cl Ni (no Fe)

7 Mitsui, MWCNT Si, S; trace Fe Si, S None found

8 Timesnano, SWCNT Cl, S, Si, Mg, Ca, Fe, Co Fe, Co Co and Fe in varying ratios with 
significantly less Fe

9 Timesnano, SWCNT Cl, S, Si, Ca, Ti, Fe, Co, Mb, Cr Cl, S, Si, Ca, Ti, Fe, Co, 
Mb, Cr

Fe, Co, Mb, Cr in varying ratios

10 Timesnano, SWCNT-COOH 
(2.73 wt%)

S, Si, Ca, Co, Fe S, Si, Ca, Co, Fe, Cl, Zn Co, trace Fe; one large catalyst 
particle had Co, Fe, and Ni, Cr, Mn, 
V

11 Timesnano, SWCNT-OH 
(3.96 wt%)

Fe, Cr, Co, Mn, Si, S, Ca, Al Ni, Fe, Cr, Co, Mn Ni and Fe, Cr, Co, Mn in varied 
combinations and ratios

12 Timesnano, DWCNT S (minor to trace Fe, Cr, Si, Mg, 
Cl, Ca, K, Na)

Co, Mb, Cu Co and small amount of Mb; one 
particle also contained Ni

13 Timesnano, MWCNT Ni, Al, Si, S, Ca, Cl, trace Fe Ni, Al, Si, S, Ca, Cl Ni

14 Timesnano, MWCNT S, Si (trace Fe) S, Si None found

15 Timesnano, MWCNT Ni, Fe, S, Si; Al and Cr in one 
area

Ni, Fe, Si (trace Cl in one 
location)

Ni and Fe in varying ratios (catalyst 
and aggregates)

16 Timesnano, MWCNT Ni, Fe, S, Si, Ca Ni, Si, Ca Ni (catalyst and aggregates; no Fe)

17 Timesnano, MWCNT-COOH 
(2.00 wt%)

Ni, Fe, S, Si, Ca Ni, Si, Ca, S, Cl, P Ni (catalyst and aggregates; no Fe)

18 Timesnano, MWCNT-OH 
(3.06 wt%)

Ni, Fe, S, Si, Ca Ni, Fe, Co, Si, S, Ca, Cl 
(trace Mn in one area)

Ni (catalyst and aggregate); Fe and 
Ni found in one catalyst particle; Ni 
and Co found in another catalyst 
particle

19 CNF reactor 1 Fe, Si, S, Al in one area Fe, Si, S Fe

20 CNF reactor 2 Fe, Si, S, Ti in one area Fe, Si, S Fe seen in the center of many 
spheres

21 CNF final product Fe, Si, S Fe, Si, S, Ca in one area Fe

22 ASTM black carbon Si, S, trace Fe, and Cl in one 
area

Si, S

SN, sample number.
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